A little over a decade ago, actual fabrication of quantum computers was barely in its incipient stages. Starting in the 2010s, though, development of functioning prototype quantum computers took off. A number of companies have assembled working quantum computers as of a few years ago, with IBM going so far as to allow researchers and hobbyists to run their own programs on it via the cloud.
Despite the strides that companies like IBM have undoubtedly made to build functioning prototypes, quantum computers are still in their infancy. Currently, the quantum computers that research teams have constructed so far require a lot of overhead for executing error correction. For every qubit that actually performs a calculation, there are several dozen whose job it is to compensate for the one’s mistake. The aggregate of all these qubits make what is called a “logical qubit.”
Who has a quantum computer?
Despite the strides that companies like IBM have undoubtedly made to build functioning prototypes, quantum computers are still in their infancy. Currently, the quantum computers that research teams have constructed so far require a lot of overhead for executing error correction. For every qubit that actually performs a calculation, there are several dozen whose job it is to compensate for the one’s mistake. The aggregate of all these qubits make what is called a “logical qubit.”
Who has a quantum computer?
Fierce competition between quantum computer researchers is still raging, between big and small players alike. Among those who have working quantum computers are the traditionally dominant tech companies one would expect: IBM, Intel, Microsoft, and Google.As exacting and costly of a venture as creating a quantum computer is, there are a surprising number of smaller companies and even startups that are rising to the challenge.
The comparatively lean D-Wave Systems has spurred many advances in the field and proved it was not out of contention by answering Google’s momentous announcement with news of a huge deal with Los Alamos National Labs. Still, smaller competitors like Rigetti Computing are also in the running for establishing themselves as quantum computing innovators.
Depending on who you ask, you’ll get a different frontrunner for the “most powerful” quantum computer. Google certainly made its case recently with
its achievement of quantum supremacy, a metric that itself Google more or less devised. Quantum supremacy is the point at which a quantum computer is first able to outperform a classical computer at some computation.
Google’s Sycamore prototype equipped with 54 qubits was able to break that barrier by zipping through a problem in just under three-and-a-half minutes that would take the mightiest classical supercomputer 10,000 years to churn through.
its achievement of quantum supremacy, a metric that itself Google more or less devised. Quantum supremacy is the point at which a quantum computer is first able to outperform a classical computer at some computation.
Google’s Sycamore prototype equipped with 54 qubits was able to break that barrier by zipping through a problem in just under three-and-a-half minutes that would take the mightiest classical supercomputer 10,000 years to churn through.
Not to be outdone, D-Wave boasts that the devices it will soon be supplying to Los Alamos weigh in at 5000 qubits apiece, although it should be noted that the quality of D-Wave’s qubits has been called into question before. IBM hasn’t made the same kind of splash as Google and D-Wave in the last couple of years, but they shouldn’t be counted out yet, either, especially considering their track record of slow and steady accomplishments.
Will quantum computing replace traditional computing?
The short answer to this is “not really,” at least for the near-term future. Quantum computers require an immense volume of equipment, and finely tuned environments to operate. The leading architecture requires cooling to mere degrees above absolute zero, meaning they are nowhere near practical for ordinary consumers to ever own.
The short answer to this is “not really,” at least for the near-term future. Quantum computers require an immense volume of equipment, and finely tuned environments to operate. The leading architecture requires cooling to mere degrees above absolute zero, meaning they are nowhere near practical for ordinary consumers to ever own.
But as the explosion of cloud computing has proven, you don’t need to own a specialized computer to harness its capabilities. As mentioned above, IBM is already offering daring technophiles the chance to run programs on a small subset of its Q System One’s qubits.
In time, IBM and its competitors will likely sell compute time on more robust quantum computers for those interested in applying them to otherwise inscrutable problems.
In time, IBM and its competitors will likely sell compute time on more robust quantum computers for those interested in applying them to otherwise inscrutable problems.
Comments
Post a Comment